Fish hatcheries and their water

Bozeman Fish Health Center

Provide health services to USFWS Fish and Aquatic

Conservation Region 6 and other partners

- Bacteriology
- Virology
- Histology processing

- Parasitology
- Molecular methods
- Veterinary Services

Work closely with 4 Fish Health Biologists

Role of USFWS hatcheries

- Recreation / Mitigation
 - Production facilities: raise fish to a stockable size
 - Broodstock facilities: raise fish that produce eggs for other facilities
- Recovery: raise T&E species to support wild populations
 - Greenback cutthroat trout, pallid sturgeon, razorback suckers, humpback chubs
 - Can be a captive or wild-sourced broodstock population
- Refugia: captive population of an ESA-listed species to ensure survival in the case of a catastrophic situation.
 - Kendall Warm Springs Dace
 - Wyoming Toads

Region 6 overview

 13 National Fish Hatcheries, plus the Bozeman Fish Technology Center

Region 6 hatcheries

• Huge geographic difference make hatcheries look and function differently

And other critters...

Getting to the water

Water sources

- Open source: Lakes, reservoirs, rivers, above ground springs, etc.
- Closed source: Underground/covered springs, wells, infiltration galleries
- Other: Municipal water

Why's water source important?

- It's the first consideration in biosecurity and preventative health!
- That's the water aquatic animals will be reared in, we don't want:
 - Pathogens
 - Chemicals (insecticides, herbicides, other pollutants)
 - Sudden/drastic fluctuations in water chemistry/quality

So which type of water is best?

... there's pros and cons to each

Open water sources

- Pros:
 - Often have more natural water chemistry composition
 - Depending on location, water mimics wild conditions (potentially helpful with relaying environmental cues for things like spawning)
 - With water treatment (UV, filtration), risks can be mitigated
 - +/- consistent flow and large volumes of water
- Cons
 - Water treatment is costly, with frequent upkeep required
 - Temperature fluctuations may not be conducive to production goals

Closed water sources

• Pros:

- Biosecure, often with no need for water treatment
- Usually have a stable temperature yearround

Cons

- Water may be pumped from deep underground >> potential fish rearing suitability issues
- +/- seasonal flow fluctuations
- Associated infrastructure (i.e., wells) can require maintenance

Different types of rearing systems

- Flow-through
- Partial re-use
- Recirculating
- Pond
- There are other types and many subtypes of rearing systems, but in our region, these are the big 4

Flow through

- This can either be single use or serial re-use
 - Single use: Water flows from source, goes through the fish rearing unit once, and is discharged
 - Serial re-use: Water still only flows through an individual rearing unit once, but then flows into another rearing unit(s) downstream, before being discharged

Partial re-use

 There is continuous new water turnover into a rearing unit, but a percentage of water is pumped back into the system instead of being discharged

Re-use or RAS

- Think display aquarium on the big scale
- 95-99% of water is re-used, with a small percentage of new water turnover each day
- These systems require careful water monitoring to ensure nitrogenous waste doesn't reach dangerous levels
- Need life support and water treatment system, including a biofilter to break down nitrogenous waste

Pond

- Wide range of sizes
 - Ponds as small as 1/10th acre and others over an acre (4,840 sq yd)
- Largely self-sustaining systems with limited new water turnover
- Algae and plant growth can increase productivity, but too much can cause problems

Effluent

- Potential effluent products
 - Fish waste
 - Feces, uneaten feed, metabolic waste
 - Chemical use
 - Therapeutic uses
 - Disinfection of equipment and rearing units
 - Feral/escaped fish
 - Pathogens
- From a biosecurity standpoint, it's also important to assess what can get into the hatchery via the effluent system
 - Feral/wild fish, predators and wildlife, aquatic invasive species

Effluent

- In our region, there's a lot of variation in where effluent discharges:
 - Waterways (usually into a side channel of a larger waterway)
 - Drainage ditches / Leech fields
 - Septic systems (usually quarantine buildings)
 - Evaporative ponds / lagoons
- Discharge testing/monitoring requirements depend on facility infrastructure and governmental regulations
 - I.e., If discharging directly into a waterway, a NPDES permits may be required

Mitigating the impact of effluent

- To mitigate the impact hatchery effluent has on the environment, numerous strategies exist in our region
 - Settlings ponds / clarifiers
 - Drum filters
 - Auger systems
 - Chemical-induced solids removal
 - Dilution!

Hatchery 1

- Water is routed through a series of filtration:
 90-micron drum filter, 1500-micron drum filter, then a 50-micron canister filter
- Clarifier
- 12-micron screen auger
 - Grinds and separates out any solid waste that has made it to the final step, including fish

Hatchery 2

- Initial step: Water routed through a 100-micron drum filter
- Solids removal using chemical flocculant (alum, then a polymer)
 - Solids are collected on a conveyer belt system and donated to a local nursery, local high school agriculture program, or other land application
- Water is discharged back into source creek

Hatchery 3

- Utilizes a vertical wetland system
 - Swimming pool-like vacuum is used to remove solid waste in raceways
 - Pumped through a series of cells containing aggregate to filter out solids
 - Cell have plants to uptake surplus nutrients.
- Water is then pumped through tanks with phosphorus stripping media before being discharged

Photo: MSU/A. Sanchez-Gonzalez

